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ABSTRACT

A prototype of an efficient and accurate rapid forecasting and mapping system (RFMS) of storm surge is

presented. Given a storm advisory from the National Hurricane Center, the RFMS can generate a coastal

inundation map on a high-resolution grid in 1min (reference system Intel Core i7–3770K). The foundation of

the RFMS is a storm surge database consisting of high-resolution simulations of 490 optimal storms generated

by a robust storm surgemodeling system, Curvilinear-GridHydrodynamics in 3D (CH3D-SSMS). TheRFMS

uses an efficient quick kriging interpolation scheme to interpolate the surge response from the storm surge

database, which considers tens of thousands of combinations of five landfall parameters of storms: central

pressure deficit, radius to maximumwind, forward speed, heading direction, and landfall location. The RFMS

is applied to southwest Florida using data fromHurricane Charley in 2004 andHurricane Irma in 2017, and to

the Florida Panhandle using data from Hurricane Michael in 2018 and validated with observed high water

mark data. TheRFMS results agree well with observation and direct simulation of the high-resolution CH3D-

SSMS. The RFMS can be used for real-time forecasting during a hurricane or ‘‘what-if’’ scenarios for miti-

gation planning and preparedness training, or to produce a probabilistic flood map. The RFMS can provide

more accurate surge prediction with uncertainties if NHC can provide more accurate storm forecasts in the

future. By incorporating storms for future climate and sea level rise, the RFMS could be used to generate

future flood maps for coastal resilience and adaptation planning.

1. Introduction

Florida, with 1350mi of coastline, is highly prone to

landfalling hurricanes. Between 1851 and 2018, 126

hurricanes struck Florida, 40 of which are major hur-

ricanes, and southwest Florida recorded 16 major

hurricanes, which is the most for any individual area in

the United States (Wikipedia 2019; Blake et al. 2011).

Hurricane Irma (2017) is the costliest hurricane

[$65 billion (U.S. dollars)] for Florida, followed byWilma

(2005), Andrew (1992), Ivan (2004), and Michael (2018).

To enable state and local governments to develop more

effective evacuation plans before a hurricane landfall,

it is essential to quickly produce and provide accu-

rate coastal inundation maps to the local emergency

managers. Currently, local emergency managers rely

on the Surge Atlas [aka maximum of the maximum

(MOM;NHC2019)], which represents the likelymaximum

inundation for specific coastal regions, and the real-time

surge forecast provided by the National Hurricane

Center (NHC) for evacuation planning. Although the

NHC forecasts are provided quickly, their forecast of

overland flooding does not provide sufficient accuracy,

due to the relatively simple physics (e.g., linear dy-

namics, empirical bottom friction, lack of wave effects)

and the typically coarse grid resolution (.1000m) of the

numerical hydrodynamicmodel, Sea, Lake, andOverland

Surge from Hurricanes (SLOSH; see, e.g., Jelesnianski

et al. 1992; Forbes et al. 2014a). Nevertheless, SLOSH is

computationally very efficient as it takes only 2–3min to

complete a hurricane surge forecast (reference system is a

single-CPU, Intel Core i7–3770K). SLOSH uses storm

parameters, such as storm center location, central pres-

sure deficit, size, and forward speed to generate wind

fields and its surge forecast result is usually accurate to

within 620% of observed water level data according to

NOAA/NWS/NHC (2013). Recent studies by Forbes

et al. (2014a,b) used more refined grid ;350m in some

regions; however, its resolution is still significantly lower

than needed to adequately represent flooding dynamics in

complex urban environments.
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Typically, the NHC storm advisories are issued at 6-h

intervals and storm surge forecast needs to be completed

within 1 h after an advisory is issued (Condon et al.

2013). High-resolution, real-time storm surge forecast-

ing systems that use high-fidelity hydrodynamic models

such as Advanced Circulation Model (ADCIRC) (see,

e.g., Luettich et al. 1992; Fleming et al. 2008; Mattocks

and Forbes 2008), Finite Volume Coastal Ocean Model

(FVCOM) (see, e.g., Chen et al. 2003; Rego and Li

2009), Curvilinear-Grid Hydrodynamics in 3D Storm

SurgeModeling System (CH3D-SSMS) (see, e.g., Sheng

et al. 2006, 2012a; Paramygin et al. 2017), and Princeton

Ocean Model (POM) [see, e.g., Peng et al. (2004), or

ECOM (Jordi et al. 2019) which is an extension of the

POM] are all able to forecast hurricane-induced storm

surges with high resolution of 100m or less. For exam-

ple, the high-resolution (.30m), 3D storm surge fore-

cast system CH3D-SSMS (Sheng et al. 2010; Paramygin

et al. 2017) can complete a storm surge and coastal

flooding forecast for southwest Florida in about 60min

on a reference computer system described earlier. Other

high-resolution storm surge models could take several

hours to complete the forecast on a similar computer

platform. However, these forecasting systems are still

computationally expensive compared to SLOSH, the

two-dimensional low-fidelity (with low resolution and

simple physics) storm surge model used by the NHC.

A detailed comparison of five storm surge models

(ADCIRC, CH3D, FVCOM, POM, and SLOSH), in

terms of their accuracy and efficiency, for simulating

historical storm and producing probabilistic coastal in-

undation maps and surge atlas is described in Sheng

et al. (2010). As models become more robust in physics

(e.g., including tides and wave effects on surge) and

model grid resolutions increase, their computational

costs also increase significantly.

At the same time, the growth in processor speed has

slowed down tremendously. Therefore, the need to

complete forecasts quickly using a high-fidelity model

with robust physics and high grid resolution becomes a

challenging task. For example, hundreds to thousands

of processors may be needed to run a high-fidelity

model forecast cycle, and even more processors may

be needed if simultaneous ensemble forecasting for a

large storm ensemble is performed to address the un-

certainties associated with storm and surge forecast er-

rors. Computational efficiency (albeit simpler physics

and lower resolution) is the main reason that SLOSH is

still the model of choice for the National Hurricane

Center. Therefore, to achieve the goal of accurate and

efficient forecasting of coastal inundation for improved

emergency planning, it is necessary to explore an alter-

native method which combines the accuracy of a direct

forecasting system based on a high-fidelity model and

the efficiency of a direct forecasting based on a low-

fidelity system.

Local emergency managers rely on the SLOSH-based

real-time surge forecasts, as well as the nonprobabilistic

surge atlas, for evacuation and mitigation planning.

While these products have been effective in minimizing

flood damage in coastal regions, local emergency man-

agers have expressed desires for more accurate products

which are obtained with high-fidelity models. More ac-

curate inundation forecasts and maps can reduce the

evacuation cost during a hurricane. Additionally, coastal

communities rely on the 1% annual exceedance proba-

bility (AEP) coastal inundation maps produced by

FEMA (FEMA 2019; NRC 2009; Condon and Sheng

2012; Yang et al. 2019) for resilience and adaptation

planning. However, the FEMA flood maps are only

updated every five or more years to incorporate changes

in storms statistics and land use features. Moreover, the

effects of changing climate and accelerating sea level

rise on coastal flooding are not incorporated into the

FEMA flood maps. To enable the production of more

accurate and frequently updated flood maps, surrogate

modeling using high-fidelity models can be applied as

described in Condon and Sheng (2012) and Yang et al.

(2019). The surrogate modeling technique developed by

Yang et al. (2019) is the foundation of the RFMS de-

scribed in this paper. As such, the RFMS is proposed not

only as a faster and more accurate forecasting system in

this paper, but also a system that can be used to quickly

produce and update probabilistic coastal flood maps

more frequently than every 5–10 years, as shown in

Yang et al. (2019). Computational details on flood map

generation can be found in Condon and Sheng (2012)

and Yang et al. (2019), hence will not be repeated in

this paper. While there is similarity between the basic

methods used in Yang et al. (2019) and this paper, the

methods for optimal storm determination and kriging

are made more efficient in this paper.

Recently, surrogate modeling has been used for storm

surge forecasting. Surrogate modeling consists of two

steps. In the preprocessing step, hundreds of direct

model simulations are performed using a high-fidelity

model. In the forecasting step, a surrogate model is used

to interpolate the direct simulation results to quickly

produce a forecast and inundation map. Condon et al.

(2013) used multivariate adaptive regression spline

(MARS) as a surrogate model with a predefined optimal

storm database (obtained with CH3D-SSMS) to de-

termine the inundation in southwest Florida during

Hurricanes Charley and Wilma. Kim et al. (2015) used

an artificial neural network (ANN) method and a da-

tabase of 446 tropical storms to predict time series of
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water level at 25 coastal locations in southern Louisiana.

Jia et al. (2016) used the same 446 tropical storms as the

database and kriging as the surrogate model to predict

the peak surge response and surge time series at coastal

stations. The predictions by Kim et al. (2015) and Jia

et al. (2016), while efficient, focused only on water el-

evations at open water coastal stations but ignored

inundation over typically dry land which becomes in-

undated only during storms. The drawbacks of ANN

include difficulty in determining proper network struc-

ture, which is often achieved by trial and error, and the

requirement that a relatively large dataset be available

for training, validating and testing, in comparison to the

surrogate modeling.

This paper builds a prototype/proof-of-concept of

the rapid forecast and mapping system (RFMS) of

storm surge and coastal flooding for local coastal

communities. The RFMS can produce a high-resolution

inundation map (envelope of maximum water eleva-

tion above ground) from a given storm forecast issued

by the NHC in 1min (reference system is a single-

CPU, Intel Core i7–3770K), compared to the 5–8min

needed by the forecasting system in Condon et al.

(2013), and the 601 min needed by direct simulation

using CH3D-SSMS.

The RFMS aims to provide supplemental high-

resolution inundation forecast to local communities

during hurricanes quickly and to allow local planning

managers to develop what-if scenarios that can be

expected for the coastal region (e.g., what if IRMA

were to move 40 mi to the west of the storm track or

Charley were to triple its size). This study improves

the MARS interpolation method and the optimal

storm selection process used by Condon et al. (2013)

by using the quick kriging method and a database of

490 objectively selected optimal storms. To validate

its accuracy and efficiency, the RFMS is evaluated by

hindcasting the storm surge and coastal inundation in

southwest Florida during Hurricanes Charley and

Irma and in Florida Panhandle during Hurricane

Michael using best track data provided by the NHC.

Simulated results are compared with the observed

surge in open water and high water marks (HWMs)

on land.

While nonparametric hurricane wind models such as

H*Wind (Powell et al. 1998) and WRF (Powers et al.

2017) are capable of producing accurate wind fields, they

are also computationally demanding and require an

excessive amount of time to produce real-time forecasts,

which adds to the total time required to produce a

storm surge forecast. The RFMS currently employs

the Holland (1980) parametric wind model, for sim-

plicity, to generate a hurricane wind field from a set of

parameters provided by the NHC storm forecasts.

While the Holland model is capable of simulating

historical storms (e.g., Vickery et al. 2000; Condon

et al. 2013), it contains a few limitations (e.g., lack of

wind field asymmetry, which becomes especially im-

portant in the northern parts of the United States as

storms undergo extratropical transition). Thus the

prototype RFMS has a few limitations inherited from

the Holland (1980) model, as well as the use of a set of

parameters (location of storm center, central pres-

sure deficit, radius to maximum wind, translational

speed, and angle of approach at landfall) as model

inputs, which are discussed in section 5. Central pres-

sure deficit is used as the main predictor of storm in-

tensity and radius to maximum wind as a measure of

storm size. For simplicity, the system discussed in the

paper does not include the effects of astronomical tides,

which can be added in the future, as discussed in more

detail in section 4. While all these can be viewed as

simplifying approximations of the proposed prototype

system, the proposed surrogate modeling approach is

found to yield more accurate and efficient forecasts over

SLOSH. The set of input parameters can be changed,

parameter quantization can be refined, and Holland

model can be replaced with a different parametric wind

model [e.g., Xie et al. (2006) or Bao et al. (2006)]. The

asymmetric hurricane wind model by Xie et al. (2006)

uses wind radii of 34, 50, and 64kt (1 kt ’ 0.51ms21)

winds for the four quadrants of the wind field. Although

this would increase the dimension of input parameters,

which may significantly increase the number of optimal

storms (discussed in section 3), the fundamental meth-

odology and computing efficiency during the forecast

cycle would remain the same.

In the following sections, we present the basic hy-

drodynamic modeling system and the model domains

(section 2), the surrogate model forecasting method

of the RFMS (section 3), applications of the RFMS

in southwest and northwest (the Panhandle) Florida

(section 4), uncertainty analysis of kriging interpolation

(section 5), RMFS results based on NHC forecast

advisories (section 6), and summary and conclusions

(section 7). It should be noted that, while this paper

addresses the uncertainties of the surrogate model-

based forecasting, it does not attempt to address the

general uncertainties of storm-track predictions or

storm surgemodel simulations as described by Sheng in

the NRC (2009) report.

2. Hydrodynamic models and model domains

Two hydrodynamic models: SLOSH and CH3D, are

used in the RFMS. SLOSH, as illustrated in section 3,
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is used for selecting the optimal storms for RFMS.

Condon et al. (2013) showed that SLOSH can be very

effectively used in selecting the optimal storms by the

joint probability method with optimal sampling (JPM-

OS). Once the optimal storms are selected, the latest

version of the CH3D model (Sheng 1987, 1990) is used

as the high-resolution hydrodynamic model to evaluate

the storm surge for each storm and build the database.

CH3D uses a boundary-fitted, nonorthogonal curvilin-

ear grid in the horizontal direction and terrain-following

sigma grid in the vertical direction. CH3D is coupled

to a wave model SWAN (Booij et al. 1999) to produce

CH3D-SSMS (Sheng et al. 2006, 2010; Paramygin

et al. 2017). To provide the water level at the open

boundaries of the southwest Florida domain for

CH3D, output of a regional-scale ADCIRC model is

used. For simplicity, this study uses the 2D version of

CH3D and the bottom friction is calculated using a

spatially varying Manning’s coefficient, which is de-

termined from U.S. Geological Survey (Sugarbaker

and Carswell 2011). A detailed description of the

model domains can be found in appendixes A and B

in this paper, and the governing equations and boundary

conditions can be found in appendix B of Condon et al.

(2013). Figure 1 shows the CH3D-SSMS and SLOSH

domains, simplified coastlines and the center of ref-

erence (CREF) for southwest Florida and Florida

Panhandle. The CH3D model is forced by a parametric

tropical storm wind model (Holland 1980) that uses

location of the storm, pressure deficit at the center,

radius to maximum winds and translational speed

of the storm to compute wind and pressure fields

(the B shape parameter is calculated from these

parameters and is bound between 1 and 2.5, and the

A parameter is calculated from B and the radius to

maximum wind).

3. Forecasting method of RFMS

The forecasting of storm surge using RFMS can be

divided into two parts. The first part, the preprocessing

step, is completed prior to the start of a hurricane season

and includes selecting optimal storms from a large en-

semble of test storms and then a high-fidelity model is

used to simulate the surge during the optimal storms.

Results of these simulations are then stored in a da-

tabase. The second part, the forecasting step, is exe-

cuted in real time by using a surrogate model to

generate a flood map based on a given storm track

issued by the NHC and the precomputed surge data-

base of optimal storms.

a. Test storms

The storm surge due to a hurricane is mainly de-

termined by five landfall parameters of hurricane

(Irish et al. 2008; Jordan and Clayson 2008): central

FIG. 1. CH3D domain (black), SLOSH domain (blue), simplified coastline (red), and CREF for (left) southwest

Florida and (right) Florida Panhandle.
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pressure deficit Pc, radius to maximum wind Rm, storm

forward speed Vf, storm heading direction u, and

landfall location L0. First, a range and discretization

must be defined for each parameter. Following the

method in Condon and Sheng (2012), 5 values are

selected for each of the four parameters Pc, Rm, Vf, u,

and 33 values are selected for L0 (shown in Table 1).

The values are selected based on the historical data

from hurricanes that affected southwest Florida (Condon

and Sheng 2012) and Florida Panhandle between 1940

and 2018. A total of 20 625 (554 3 33) storms, which

are called test storms, are defined by using all possible

combinations of the selected parameter values, and

storm tracks are generated for these synthetic storms

based on these landfalling characteristics.

The test storms are then simulated with SLOSH, and

total inundation volume (TIV) (Sheng et al. 2012b) for

each storm is calculated by

TIV
j
5 �

Nc

i51

A
i
3H

ij
, j5 1, . . . ,m , (1)

where Nc is the number of land grid cells of the do-

main, Ai is the area of the land grid cell, Hij is the

inundation height of the ith land grid cell from

jth storm, which is calculated by subtracting bottom

elevation of the land cell from the simulated maxi-

mum envelope of water (MEOW) of the cell, and m

is the total number of test storms. The TIV calcu-

lated from result of a direct simulation is called

STIV. TIV is a goodmetric for coastal inundation as it

is the product of total inundation area (TIA) and the

average inundation height (AIH), as explained in

Sheng et al. (2012b).

b. Optimal storm selection

To reduce the size of the storm database and inter-

polation time, the test storm ensemble needs to be re-

duced significantly below 20 625. A number of so-called

optimal storms are selected from the test storms. The

optimal storms and their responses then form the data-

base to be used by quick kriging interpolation method.

Briefly, the optimal storms are objectively selected in

the following way:

1) Select 113 fundamental optimal storms. The funda-

mental optimal storms consist of 1) combinations of

the maximum/minimum values of the five landfall

parameters (32 fundamental optimal storms), 2)

combinations of median value of one landfall pa-

rameter with the maximum/minimum values of the

other four landfall parameters (80 fundamental

optimal storms), and 3) combination of the median

values of the five landfall parameters (1 fundamen-

tal optimal storm).

2) Find the TIV of the optimal storms from the STIV.

The storm surge responses to the test storms other

than the optimal storms are interpolated from opti-

mal storm responses using quick kriging technique,

rather than simulated directly, and the TIV calcu-

lated from the results obtained by interpolation is

combined with the TIV of the optimal storms, which

is called ITIV.

3) The difference between STIV and ITIV, calledDTIV,

is calculated by

DTIV
j
5 jSTIV

j
2 ITIV

j
j, j5 1, . . . ,m. (2)

4) Find the maximum value of DTIV and the corre-

sponding storm from the test storms. Add that storm

into the optimal storm set.

5) Calculate the averaged TIV error (ATE) as

ATE5
1

m
�
m

j51

DTIV
j

STIV
j

3 100%. (3)

6) Repeat steps 2–4, each time one more optimal storm

is added into the optimal storm set, until the desired

accuracy (ATE) is achieved.

Figure 2 shows ATE as a function of the number of

optimal storms used in the RFMS. Based on this

result, 490 optimal storms are selected with the de-

sired ATE lower than 10%. The regression plot

between STIV and ITIV is shown in Fig. 3, with

coefficient of determination (R2) of 0.98. The ATE

and R2 values indicate that every test storm could

be accurately interpolated by the quick kriging tech-

nique with the database consisting of 490 optimal

storms.

TABLE 1. The values of the landfall parameters in RFMS for

southwest Florida and the Florida Panhandle.

Pc

(mb)

Rm

(mi)

u

(8)
Vf

(mi h21)

L0

(nmi)

Southwest Florida

15 10 0 5 From 2160 to 160 relative

to CREF for every 10 n

mi (33 locations)

35 40 22.5 10

55 80 45 15

75 120 67.5 20

95 160 90 30

Florida Panhandle

15 10 220 6 From 2160 to 160 relative

to CREF for every 10 n

mi (33 locations)

35 25 0 13

55 40 20 20

75 55 40 27

95 70 60 34
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c. Direct simulation

The optimal storms are simulated by the high-

resolution CH3D-SSMS, and surge responses are

saved to the database. Steps 1–3 prepare the system

for forecasting and can be executed before the hur-

ricane season starts. This allows the numerical models

used for direct simulations to be as complex as nec-

essary and have very high resolution since these

simulations do not have the severe time constraint

imposed by the NHC for the forecast cycles. Once the

optimal surge database is generated, the system is

ready for forecasting.

d. Surrogate model: Quick kriging interpolation
method

During a forecasting cycle, the system receives a

predicted storm track (e.g., from NHC) and uses this

information combined with the predefined database to

generate a floodmap. The quick kriging (QK) method is

used to interpolate the response of any storm defined by

its landfall parameters. The kriging model is a Gaussian

surrogate model, and the value at a point is weighted

according to spatial covariance value and is correlated to

the values at neighboring points. To generate the water

level response of a storm for one domain, the kriging

model could be trained at each cell inside the domain

using the water level responses of the optimal storms

and perform kriging interpolation for each cell. In this

way, the number of interpolations needed equals to the

number of cells in the domain. Alternatively, the kriging

model could be trained using water level responses of all

cells inside the domain once, then only one kriging in-

terpolation is needed. The latter interpolation method

could generate the water level responses for the whole

model domain much faster with slightly less accurate

results, compared to the former interpolation method.

Therefore, the latter method, called quick kriging, is

adopted in this study because of its high efficiency.

Yang et al. (2019) showed that the global kriging

(RMSE 5 0.17 and R2 5 0.95) is only slightly less

accurate than the local kriging (RMSE 5 0.16 and

R2 5 0.96) and the difference between the two results

is negligible, especially when compared to other un-

certainties. More details of the two kriging methods

and their accuracy and efficiency can be found in Yang

et al. (2019).

The RFMS forecasting procedure is summarized as

follows:

1) Receives the most recent tropical storm advisory that

contains track information and storm characteristics;

2) Extracts/estimates the five storm parameters at

landfall;

3) Uses the set of parameters from step 2 and optimal

storm database to perform quick kriging interpola-

tion and obtain interpolated water levels at every

grid cell; and

4) Calculates inundation as interpolated water level

minus land elevation at all output points and creates

output in user-specified format (e.g., GIS-enabled

raster GeoTIFF).

Details of the procedure are described graphically in

appendix C. With the surge database of 490 optimal

storms, the RFMS takes less than 1min to generate an

inundation map from an NHC forecast advisory, which

gives the emergency managers much more time to make

FIG. 2. The curve of ATE as a function of the number of optimal

storms used in quick kriging interpolation.

FIG. 3. Comparison between STIV and ITIV with 490 optimal

storms.
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decisions than if CH3D-SSMSwere used for forecasting.

It also provides much more detailed and accurate

coastal flooding information than SLOSH, as a sup-

plement for emergency evacuation planning. The

RFMS can also be used by planners in coastal gov-

ernments to quickly produce flood maps of ‘‘what-if’’

scenarios and probabilistic maps with various return

periods for adaptation and resilience planning. These

maps can be overlaid onto maps of critical infra-

structures in a GIS system to enable resilience and

adaptation planning.

4. Application of the RFMS to southwest and
northwest (Panhandle) Florida

The accuracy of the RFMS is evaluated by hind-

casting Hurricane Charley, which was discussed in

Condon et al. (2013), Hurricane Irma in 2017, and

Hurricane Michael in 2018. Best tracks from the

Atlantic hurricane database (HURDAT2) and loca-

tions of the HWMs of the three hurricanes are shown

in Fig. 4. The best tracks are used instead of forecast

tracks because the focus of the paper is not on the

accuracy of the forecast track, but on the feasibility of

the proposed RFMS. As pointed out by Condon et al.

(2013), ‘‘Use of the tide model did not improve the

results much but does nearly double the time needed to

build the surge response’’, thus the tide model is not

included when applying the RFMS to the domains.

Depending on the model domain and tidal ampli-

tudes, tide may need to be considered by including

more optimal storms with flood and ebb tides for

all intermediate tidal amplitudes into the database.

The exclusion of tide does not impact the results

noticeably due to the relatively low tidal range in

Florida (Condon et al. 2013).

a. Hurricane Charley (2004)

Hurricane Charley made landfall near the peninsula

in Punta Gorda, Florida on 13 August 2004. At the

time of landfall, Charley was a very compact and a

fast-moving storm, with landfall parameters: Pc of

72mb (1mb5 1 hPa), Rm of 11.5mi, Vf of 21.6 mi h21,

u of 16.68, and L0 of 246 [46 n mi (1 n mi 5 1.852 km)

south of CREF]. Detailed descriptions of Hurricane

Charley can be found in National Hurricane Center

(2004). The inundation maps of Hurricane Charley

simulated by CH3D-SSMS and interpolated by RFMS

are shown in Fig. 5. The observed HWM data col-

lected by the Florida Department of Environment

Protection (FDEP) are compared to the simulated

and interpolated peak water levels in Fig. 5. The

interpolated peak water levels have R2 of 0.70

and slightly lower RMSE (0.37 m) than simulated

peak water levels (0.40 m), compared to the ob-

served HWM data. Hurricane Charley is then sim-

ulated by SLOSH and the simulated peak water

levels are compared to the observed HWM data in

Fig. 5. The RMSE of 0.63 m and R2 of 0.16 indicate

that the directly simulated results by SLOSH are

much less accurate than the direct simulated results

by CH3D and interpolated results by RFMS.

The HWM comparison between observed water

levels and interpolated water level, with R2 of 0.70, is

better than that the value of 0.55 in Condon et al.

(2013). This is expected, as the water level response

produced by kriging interpolation method is more

accurate than that by multivariate interpolation

FIG. 4. The best track and the locations of HWMs of (left) Hurricane Charley, (center) Hurricane Irma, and (right) Hurricane Michael.
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FIG. 5. Inundation maps (top left) simulated by CH3D-SSMS, (top right) interpolated by RFMS, and HWM

comparisons between observed water elevations and (middle left) simulated water elevations by CH3D-SSMS, and

(middle right) interpolated water elevations by RFMS for Hurricane Charley. (bottom left) Inundation map

simulated by SLOSH and (bottom right) HWM comparisons between observed water elevations and simulated

water elevations by SLOSH during the stage of peak water level. Blue circles represent the FDEP high water mark

data. RMSE is root-mean-square error and NRMSE is normalized root-mean-square error.
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method used by Condon et al. (2013) with the same

optimal storms, as confirmed in Yang et al. (2019).

The observed HWMs on Marco Island are over-

estimated by both direct simulation and RFMS, most

likely due to the overestimated wind speed (the wind

speed at recorded at theMarco Island Airport is lower

than predicted by the Holland model). The errors of

HWMs in other places may be attributed to the dis-

crepancy in topography and small-scale local fea-

tures (e.g., the HWM located in a semienclosed

FIG. 6. As in Fig. 5, but for Hurricane Irma. Blue, green, and pink circles represent the data fromUSGS high water

mark, USGS storm tide sensor, and NOAA tidal station, respectively.
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location) which may not be adequately resolved by

the CH3D model grid.

b. Hurricane Irma (2017)

Hurricane Irma made landfall on Marco Island,

Florida, as a category 3 hurricane on 10 September 2017

with the maximum wind speed of 100 mih21. Hurricane

Irma is an extremely powerful one, with the landfall pa-

rameters: Pc of 77mb, Rm of 17.3mi, Vf of 13.8 mih21,

u of 08, and L0 of 270 (70n mi south of CREF).

Hurricane Irma is simulated by CH3D-SSMS and in-

terpolated by the RFMS. The corresponding inundation

FIG. 7. As in Fig. 5, but forHurricaneMichael. Blue and pink circles represent the data fromUSGS highwatermark

and NOAA tidal station, respectively.
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maps and the comparisons of the HWM data to the

simulated and interpolated peak water levels are shown

in Fig. 6. The RMSE between observed HWM data and

interpolated peak water levels is 0.42m, which is 11 cm

larger than the one between observed HWM data and

simulated peak water levels, with an R2 of 0.71. The in-

undation map of Hurricane Irma simulated by SLOSH

and the HWM comparisons are shown in Fig. 6. Overall

speaking, the inundation map of Hurricane Irma by

SLOSH is overestimated, with RMSE of 0.57m and R2 of

0.61. The large RMSE is due to the fact that the SLOSH

grid is relatively coarse, hence several nearby HWM lo-

cations are within a single cell of the SLOSH domain. The

CH3D domain, with a much higher resolution, can more

accurately resolve these HWM locations.

The inundation area in the Collier-Seminole State Park

area is overestimated by theRFMS, probably because the

direct simulation usesH*Wind, which compares better to

the measured wind data than the synthetic Holland

(1980) wind used by the RFMS (see Hu et al. 2012; Sheng

and Zou 2017). One HWM located inside the Pumpkin

Bay is overestimated by 1m by the RFMS, probably due

to interpolation error. Overall speaking, RFMS is able to

forecast the storm surge of Hurricane Irma accurately

(with less than 10% error in terms of ATE) and quickly.

c. Hurricane Michael (2018)

Hurricane Michael is the first category 5 hurricane

that struck contiguous United States since Hurricane

Andrew (1992). Hurricane Michael made landfall

near Panama City within the Florida Panhandle on

10 October 2018, with the landfall parameters: Pc of

92mb, Rm of 17.3mi, Vf of 16.5 mi h21, u of 338, and
L0 of 280 (80 n mi west of CREF). Figure 7 shows the

inundation maps of Hurricane Michael simulated by

CH3D-SSMS and interpolated by RFMS; regression

plots of observed HWMs versus simulated peak water

levels; the inundation map of Hurricane Michael sim-

ulated by SLOSH and the HWM comparisons. The

simulated peak water elevations by SLOSH are un-

derestimated compared to the observed HWMs, and

some of the inland HWM locations are not inundated

(simulated water elevations equal to zero), mainly due

to the low grid resolution of the SLOSH domain.

The RMSE between the observed HWMs and simu-

lated peak water levels is 0.56m, which is 0.11m lower

than that between observed HWMs and interpolated

peak water levels, with anR2 of 0.53, compared to theR2

of 0.06 for SLOSH. The relatively large errors at some

stations can be attributed to the relatively coarse grid

resolution of the Panhandle domain which (;800m) is

not as fine as that of the southwest Florida domain

(average grid size of ;200m). Thus, the inundation on

small islands (e.g., St. George Island andDog Island) and

areas near some semienclosed bay (e.g., Saint Andrew

Bay and Ochlockonee Bay) cannot be accurately simu-

lated or interpolated. The results are expected to improve

if finer resolution grid and topography data are used

(see, e.g., Shen et al. 2006; Yin et al. 2016).

d. A sensitivity analysis

We analyzed the relative importance of the five landfall

parameters in determining the TIV. In the southwest

Florida domain, central pressure deficit accounts for 29%

of total variability of TIV, followed by heading direction

(25%), landfall location (21%), radius of maximum wind

(20%), and storm forward speed (5%). In the Florida

Panhandle domain, central pressure deficit accounts for

30%of total variability ofTIV, followedby landfall location

(22%), storm heading direction (20%), radius of maximum

wind (17%) and storm forward speed (11%). These results

confirm that, while pressure deficit is the most dominant

FIG. 8. Inundation maps of Hurricane Irma with uncertainty. (left) RFMS 1 RMSE and (right) RFMS 2 RMSE.
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parameter in affecting coastal inundation during hurricanes

considered in this study, other factors such as radius to

maximum wind, heading direction, landfall location, and

storm speed also play very significant roles hence cannot be

de-emphasized. The NHC website used to relate surge

height to hurricane intensity [represented by the Saffir–

Simpson Hurricane Wind scale (https://www.nhc.noaa.gov/

aboutsshws.php)] only, but that has been removed after

Hurricane Katrina, which demonstrated that surge and

flood depend significantly on the other parameters (hurri-

cane size, forward speed, heading direction, and landfall

location) as well. Our sensitivity analysis confirms that.

5. Uncertainty analysis of kriging interpolation

The uncertainty of kriging interpolation method used

in this study can be directly estimated by the RFMS,

since the RMSE of every grid cell inside the domain is

calculated using the spatial correlation coefficients [see

Lophaven et al. (2002) and Yang et al. (2019) for de-

tails]. The uncertainty depends on the input landfall

parameters and the simulated water level responses of

the optimal storms and varies from place to place inside

the domain.

For a single storm prediction, the RFMS calculates

the interpolated water level and RMSE for every cell

inside the domain. The upper limit of predicted water

level is calculated as interpolated water level (deno-

ted as RFMS) plus RMSE: (RFMS1RMSE), and the

lower limit of predicted water level is calculated as

interpolated water level minus RMSE: (RFMS 2
RMSE). The inundation maps of Hurricane Irma with

uncertainty considered are shown in Fig. 8 as an

example.

FIG. 9. (top left) Evolution of forecast tracks for Hurricane Irma, labeling corresponds to NHC forecast advisory

(e.g., the label 48-HR is the forecast advisory 48 h before landfall of Hurricane Irma; BT is the best track of

Hurricane Irma). (top right) Inundationmap of the 48-h forecast advisory by RFMS. (bottom left) Inundationmap

of the 36-h forecast advisory by RFMS. (bottom right) Inundation map of the 24-h forecast advisory by RFMS.
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The inundation area is increased by 35% in the upper-

limit case, and Sanibel Island and Pine Island, which are

barely inundated in the inundation map without uncer-

tainty (Fig. 6), are inundated. For Everglades National

Park, the maximum inundation height is increased by

40 cm, with the inundation area increased by 10%. The

lower limit case shows 23% decrease of inundation area

and lower inundation heights. In practice, the upper-

limit case is more useful as it could provide the extreme

condition to be used by the emergency managers of

local government for hurricane response and miti-

gation planning.

6. RFMS using forecast advisories

One of the challenges in forecasting storm surge is the

abrupt change in forecast advisory issued by NHC, such

as the forecast advisories of Hurricane Charley and

Hurricane Irma. Hurricane Charley was forecasted to

landfall near Tampa Bay, but it shifted over 60 mi to the

south in the final advisory only 12 h before landfall

(Pasch et al. 2004; Condon et al. 2013). Hurricane Irma

was predicted to make landfall at Everglades City ac-

cording to the forecast advisory 48h before landfall.

Twenty-four hours later, the forecasted landfall location

shifted 100 mi to the north at Sarasota. As shown in the

best track (Fig. 9), the landfall location moved 80 mi

back to the south at Macro Island. Such sudden changes

of forecast advisory require the storm surge forecast

system to respond quickly (in a fewminutes) to update

the inundation map, which poses a major challenge for

any high-resolution real-time storm surge forecast

system introduced earlier in the paper. In such occa-

sions, the RFMS presented in this paper can be

extremely useful.

Figure 9 shows the inundation maps produced by the

RFMS using the 48-, 36- and 24-h forecast advisories.

Figure 10 shows the RMSE for SLOSH and RFMS for

different forecast cycles. Overall, the RFMS performs

better than SLOSH when compared to the observed

data. The TIV and total inundation area of the inun-

dation map for the 24-h forecast advisory are increased

by over 100% compared to those for the 48-h forecast

advisory. This shows that abrupt change of forecast

advisory can greatly alter the inundation volume and

area influenced by the hurricane. The RFMS, which is

capable of generating a high-resolution inundation

map from the new storm advisory in 1min, can enable

the emergency managers to modify the evacuation plan

quickly.

The tropical cyclone forecast models used by the

NHC, including dynamical models, statistical models,

and statistical–dynamical models, produce a number of

forecast advisories within a forecast cycle (NHC 2009).

The uncertainty of the estimated landfall parameters

depends on the forecast advisories, whose errors are

discussed in detail in Condon et al. (2013) and Landsea

and Franklin (2013). The forecast advisories are used by

the RFMS to generate a comprehensive inundation map

for each forecast cycle, as described below.

1) Find the forecasts that will make landfall at the

study domain.

2) Estimate the landfall parameters from the forecasts,

which are used by RFMS to calculate the corre-

sponding inundation maps.

3) For each land cell inside the domain, count the

number of storms N that have inundation greater

than 1ft at that cell.

4) Compute the inundation probability as N/total num-

ber of forecast advisories.

5) Plot the map of inundation probability as a compre-

hensive inundation map.

Figure 11 shows forecast advisories issued by NHC 48h

before landfall and the corresponding comprehensive

inundation map. There were 73 advisories issued by

NHC, 54 of which were predicted to make landfall on

the southwest Florida domain. The central pressure and

radius to maximum wind data are missing for some of

the forecasts, and the data from the official forecast

(OFCL) are used instead. The comprehensive inunda-

tion map was completed in 1min (reference system Intel

Core i7–6700). Since the probabilistic inundation map

incorporates all forecast advisories and their uncer-

tainties, it contains much more informative than a single

inundation map, hence is more useful for the local

emergency managers. The inundation probability and

FIG. 10. RMSE of simulated vs observed data (observation in-

clude the data from USGS high water mark and NOAA tidal sta-

tions) for SLOSH and RFMS.
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the corresponding severity of the inundation threat are

described in Table 2.

The uncertainty of the RFMS due to the storm fore-

cast errors could be estimated by using the forecast ad-

visories issued by NHC. At each forecast cycle (6 h), the

storm advisories are used by RFMS to generate the in-

undation maps. The inundation values are ranked from

lowest to the highest, and the 5th and 95th percentiles of

inundations are calculated accordingly at each location.

The forecast advisories at 47 and 5h before the landfall

of Hurricane Michael are used and the comparisons of

observed HWMs and interpolated HWMs by RFMS

with uncertainties are shown in Figs. 12c and 12d. As

noted by NHC (Brown 2017): ‘‘We (NHC) still have

significant difficulty in forecasting rapidly intensifying

and rapidly weakening storms.’’ The central pressure

deficit predictions of Hurricane Michael, a rapidly in-

tensified storm, were generally lower than the best track

values, thus resulting in the lower predicted HWMs and

the relatively large vertical uncertainties which is a

measure of the uncertainties associated with the pres-

sure deficit predicted by various atmospheric models.

To confirm that the uncertainties shown in Figs. 12c

and 12d represent the uncertainties associated with the

tropical cyclone forecast models used by NHC, but

not a measure of the uncertainties of the RFMS, the

RFMS was ran by setting the central pressure deficit

values of all track advisories for Hurricane Michael to

the values of the best track at 47 and 5 h prior to

landfall. This eliminates the uncertainty caused by the

underestimation of storm intensity. Figures 12e and

12f show the newHWM comparisons with less vertical

uncertainty. This shows that if and when NHC improvs

their prediction of storm intensity and size, the RFMS

predicted HWMs would become much more accurate.

7. Summary and conclusions

This paper introduces an accurate and efficient rapid

forecast and mapping system (RFMS) of hurricane-

induced storm surge and coastal flooding. It uses the

quick kriging interpolation method with the storm surge

database consisting of high-fidelity simulations of the

optimal storms and can generate high-resolution storm

surge response and inundation map for an approaching

hurricane or a ‘‘what-if’’ scenario in 1min. An objective

method for selecting the optimal storms for RFMS is

proposed and evaluated by selecting 490 optimal storms

for southwest Florida and Florida Panhandle. For an

approaching hurricane, five landfall parameters (center

pressure deficit, radius tomaximumwind, storm forward

speed, storm heading direction, and landfall location)

are calculated from National Hurricane Center fore-

cast advisory and used by the RFMS to predict the

storm surge and inundation map. The RFMS presents

TABLE 2. The inundation probability and the corresponding

inundation threat.

Inundation probability Inundation threat

.50% Very high

30%–50% High

10%–30% Moderate

,10% Low

FIG. 11. (left) The forecast advisories of Hurricane Irma issued by NHC 48 h before landfall. (right) The com-

prehensive inundation map of Hurricane Irma at 48 h before landfall.

1676 WEATHER AND FORECAST ING VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 12/03/20 06:22 PM UTC



FIG. 12. Forecast advisories of Hurricane Michael issued by NHC at (a) 47 and (b) 5 h before landfall. HWM

comparisons between observed HWMs and interpolated HWMs by RFS using the forecast advisories at (c) 47 and

(d) 5 h before landfall, and using the forecast advisories with central pressure deficit values replaced by the values

from the best track at (e) 47 and (f) 5 h before landfall. The horizontal gray lines of HWM comparisons indicate the

uncertainties calculated by kriging algorithm, and the vertical gray lines indicate the 5th and 95th percentiles of

HWM predictions by RFMS.
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an attractive alternative for producing very quick and

accurate surge and inundation forecast and map with-

out direct model forecasting, which requires excessive

computing resources.

The key findings of this paper are as follows:

1) The RFMS that uses the quick kriging interpolation

method is highly efficient. It takes about 1min to

produced high-fidelity forecast and inundation map

during an approaching storm or ‘‘what-if’’ scenario

using only a single CPU.

2) The RFMS is validated for Hurricanes Charley,

Irma, and Michael on two different domains in

Florida. The coefficients of determination (R2) be-

tween observed and simulated (by CH3D-SSMS)

high water marks (HWMs) for the three hurricanes

are between 0.60 and 0.84, with the root-mean-

square error (RMSE) from 0.31 to 0.56m. While

the coefficients of determination between observed

and interpolated HWMs by RFMS for the three

hurricanes are between 0.53 and 0.72, with RMSE

from 0.37 to 0.65m. The comparisons show that the

RFMS is capable of generating a sufficiently accurate

high-resolution inundation map of an approaching

storm in 1min. With similar amount of computing

time, RFMS could generate much higher resolution

and more accurate inundation maps than SLOSH.

The detailed coastal inundation maps can be used as

supplement to the lower-resolution SLOSH forecast.

3) The uncertainties of the RFMS can be estimated and

added to the predicted inundation maps to provide

the extreme flood condition to be considered by the

emergency managers of local governments for evac-

uation and mitigation planning.

4) When a forecast advisory shows sudden unexpected

changes of landfall parameters, the RFMS can quickly

generate aflood forecast and inundationmap.This is very

useful during such hurricanes as Charley and Irmawhose

tracks changed abruptly after a forecast advisory is issued,

or in Hurricane Harvey and Michael which underwent

rapid intensification due to a very warm ocean.

5) The forecast advisories from the tropical cyclone

forecast models by the NHC could be used by the

RFMS to quantify the uncertainty of predicted storm

surge due to the storm forecast errors. The RFMS

can provide accurate prediction of the storm surge

with uncertainties if accurate storm forecasts are

provided by NHC in the future.

The RFMS introduced in this study is a prototype sys-

tem that focuses on the methodology of quickly fore-

casting the storm surge and inundation using surrogate

modeling. The forecasting results could be improved by

including the effects of the precipitation, river flow and

vegetation, though the current RFMS already could

generate more accurate storm surge and inundation

forecast than SLOSH. The effect of precipitation could

be included by coupling with the hurricane rainfall

model such as the Parametric Hurricane Rainfall Model

(PHRaM; see Lonfat et al. 2007), or the tropical cyclone

rain rate model of Snaiki and Wu (2018). The river flow

and inland flooding could be accounted for by coupling

with the hydrologic model such as the Coupled Routing

and Excess Storage model (CREST; Blanton et al.

2018), or the Gridded Surface/Subsurface Hydrologic

Analysis model (GSSHA; Silva-Araya et al. 2018).

The 3D vegetation-resolving surge model (Sheng et

al. 2012b; Sheng and Zou 2017), instead of the 2D surge

model in this study, could be used to improve the sim-

ulation of water levels and waves in vegetated areas. The

Manning’s coefficients of the vegetated areas such as the

Everglades National Park are derived from the land

cover data, which does not consider vegetation’s density,

height, and vertical structure, and could result in errors

(see, e.g., Lapetina and Sheng 2014;Medeiros et al. 2015;

Sheng and Zou 2017). Moreover, incorporating the

high-resolution LiDAR data into the digital elevation

model (DEM) could increase the resolution of near-

shore topography data, which improves the accuracy of

flooding forecast (see, e.g., Blumberg et al. 2015).

To further improve the accuracy of the RFMS, the

dynamic surge model could be enhanced. For example,

the 3D vegetation-resolving CH3D-SSMS can be used

instead of the 2D version used in this study. CH3D-

SSMS can be coupled to stormwater model and water-

shed model to include the effects of precipitation,

freshwater, and groundwater on coastal inundation.

While the expanded dynamic modeling system will in-

crease the computing time it takes to develop simula-

tions of the optimal storms, the resulting RFMS will still

take only 1–3min to produce a forecast of coastal inun-

dation map. The RFMS technology will also allow the

quick and frequent revision of flood maps, which now

takes more than five years. For example, after every hur-

ricane season, flood map for any coastal region could be

quickly revised by adding the new stormdata to theRFMS

preprocessing step to revise the optimal storm database.
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APPENDIX A

Southwest Florida Domains

The southwest Florida domain of CH3D model covers

approximately 170 mi alongshore, from Ponce De Leon

Bay on the south to the Palma Sola Bay on the north, and

the domain’s cross-shore coverage is around 115 mi (90 mi

offshore and 25mi inland). The study domain has relatively

mild slope (compared to southeast Florida), with the water

depth increasing to 100m at the offshore boundary. The

cities such as Sarasota, Fort Myers, and Naples and six

counties are included in thedomain.TheCH3Ddomainhas

386140 cells with a minimum resolution of 20m in coastal

areas and average grid size of about 200m. The southwest

Florida domain of the SLOSH model (‘‘efm2’’) extends

farther south to the Florida Keys and has less coverage in

Bradenton, Florida, compared to that of the CH3Dmodel.

The SLOSHgrid has 11100 cells and aminimum resolution

of;200m and an average grid size of ;1500m.

APPENDIX B

Florida Panhandle Domains

The Florida Panhandle domain of CH3Dmodel covers

about 300 mi alongshore, from Pensacola to Clearwater.

The domain covers about 40000mi2 of northeastern Gulf

ofMexico and extends 15–20mi inland from the coastline.

A total of 16 counties of Florida are included in the do-

main. The CH3D domain has 131560 cells with a mini-

mum resolution of ;150m in coastal areas and averaged

grid size of ;800m. The Florida domain of the SLOSH

model (‘‘ap3’’) covers similar areas with that of CH3D

model, except the Tampa Bay area is not included. The

SLOSH grid has 6603 cells and average grid size of

;3000m. Both the southwest Florida domain and Florida

Panhandle domain of CH3D have significantly higher

spatial resolution, compared to those of SLOSH.

APPENDIX C

Forecasting Procedure of RFMS

The forecasting procedure of RFMS described in

section 3d is shown in Fig. C1.
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